$\beta = 102.060 \ (5)^{\circ}$

Z = 4

 $V = 4940.6 (10) \text{ Å}^3$

Mo $K\alpha$ radiation

 $\mu = 2.82 \text{ mm}^{-1}$

 $R_{\rm int} = 0.049$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(OC-6-13)-Bis(acetone)dihydridobis(tricvclohexvlphosphine)iridium(III) tetrafluoridoborate acetone solvate

Lutz Dahlenburg,* Ralf Menzel and Frank W. Heinemann

Institut für Anorganische Chemie, Universität Erlangen-Nürnberg, Egerlandstrasse 1, D-91058 Erlangen, Germany

Correspondence e-mail: lutz.dahlenburg@chemie.uni-erlangen.de

Received 12 October 2007; accepted 16 October 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; disorder in solvent or counterion; R factor = 0.024; wR factor = 0.043; data-toparameter ratio = 23.4.

The title solvated salt, $[Ir(H)_2 \{P(C_6H_{11})_3\}_2 \{OC(CH_3)_2\}_2]BF_4$. $(CH_3)_2CO$, was obtained by the protonation of $[Ir(H)_5 \{P(C_6H_{11})_3\}_2$ with HBF₄ in acetone. The cation features OC-6-13 stereochemistry, with Ir - P = 2.3159 (6) and 2.3267 (6) Å, and Ir -O = 2.238 (1) and 2.276 (1) Å. The BF₄⁻ anion shows threefold rotational disorder about a B-F bond, with site occupancies of 0.65, 0.25 and 0.10. While there are several intramolecular $C-H\cdots O$ and intermolecular $C-H\cdots F$ hydrogen-bonding interactions $[C \cdot \cdot \cdot O] = 3.207 (3) -$ 3.358 (3) Å, and $C \cdot \cdot F = 3.434$ (3) and 3.441 (3) Å], the O atom of the acetone solvent molecule does not act as a C-H acceptor.

Related literature

For the corresponding solvent-free bis(triphenylphosphine) complex, $[Ir(H)_2 \{P(C_6H_5)_3\}_2 \{OC(CH_3)_2\}_2] [BF_4]$, see Crabtree et al. (1984). For data analysis techniques, see Orpen (1980).

Experimental

Crystal data

[IrH2(C18H33P)2(C3H6O)2]BF4--C₃H₆O $M_r = 1016.09$ Monoclinic, $P2_1/c$ a = 10.218 (1) Å b = 25.199 (4) Å c = 19.621 (1) Å

Data collection

Nonius KappaCCD area-detector diffractometer Absorption correction: integration (Gaussian; Coppens et al., 1965) $T_{\min} = 0.562, \ T_{\max} = 0.687$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.024$
$wR(F^2) = 0.043$
S = 1.04
12737 reflections
544 parameters
39 restraints

T = 100 (2) K $0.20 \times 0.18 \times 0.17 \text{ mm}$ 111705 measured reflections 12737 independent reflections

10353 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\text{max}} = 0.54 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.52 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Ir1-O2	2.2379 (13)	Ir1-P2	2.3159 (6)
lr1-01	2.2762 (14)	Ir1-P1	2.3267 (6)
O2-Ir1-O1	83.00 (5)	O2-Ir1-P1	94.84 (4)
O2-Ir1-P2	97.03 (4)	O1-Ir1-P1	92.05 (4)
O1-Ir1-P2	96.06 (4)	P2-Ir1-P1	166.350 (19)

Table 2

H	yc	lrogen-	bond	geometry	(I	٩,	°)	۱.
---	----	---------	------	----------	----	----	----	----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C8−H8A···O1	0.99	2.49	3.358 (3)	146
C18-H18A···O2	0.99	2.45	3.207 (3)	133
C36−H36B···O1	0.99	2.50	3.347 (3)	144
C39-H39A···O2	0.98	2.45	3.304 (3)	146
$C39-H39B\cdots F4^{i}$	0.98	2.54	3.441 (3)	153
$C40-H40B\cdots F1^{ii}$	0.98	2.51	3.434 (3)	156

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x - 1, $-y + \frac{3}{2}$, $z - \frac{1}{2}$.

Data collection: COLLECT (Bruker-Nonius, 2002); cell refinement: COLLECT; data reduction: COLLECT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Support of this work by the Deutsche Forschungsgemeinschaft (Bonn, SFB 583) is gratefully acknowledged. The authors are also indebted to Mr P. Bakatselos for his skilful assistance.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2038).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Bruker-Nonius (2002). COLLECT. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA.
- Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035– 1038.
- Crabtree, R. H., Hlatky, G. G., Parnell, C. P., Segmüller, B. E. & Uriarte, R. J. (1984). *Inorg. Chem.* 23, 354–358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Orpen, A. G. (1980). J. Chem. Soc. Dalton Trans. pp. 2509-2516.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, m2769-m2770 [doi:10.1107/S1600536807050970]

(OC-6-13)-Bis(acetone)dihydridobis(tricyclohexylphosphine)iridium(III) tetrafluoridoborate acetone solvate

L. Dahlenburg, R. Menzel and F. W. Heinemann

Comment

The cation of the title complex (Fig. 1), adopts a slightly distorted *OC*-6–13 coordination geometry, where the two monodentate phosphines lie *trans* to each other [Ir—P = 2.3159 (6) and 2.3267 (6) Å] and the hydrides are opposite to the O-bound acetone groups [Ir—O = 2.238 (1) and 2.276 (1) Å] (Table 1). The tetrafluoridoborate anion exhibts threefold rotational disorder about the B1—F1 axis. The acetone molecule of solvation, by contrast, is located in fully ordered atomic positions.

The ionic components are linked by C—H···F hydrogen-bonding contacts, in which atoms C39 and C40 of the acetone ligands act as donors, *via* H39B and H40B, to fluorine atoms F4 and F1 with C39···F4(-x + 1, y - 1/2, -z + 1/2) = 3.441 (3) Å and C40···F1(x - 1, -y + 3/2, z - 1/2 + z) = 3.434 (3) Å, respectively. Even though the cation displays several intramolecular C—H···O interactions with C···O distances in the range 3.207 (3)–3.358 (3) Å (Table 2), the oxygen atom of the solvate molecule does not function as a carbon—hydrogen bond acceptor.

In the corresponding solvate-free bis(triphenylphosphine) complex $[Ir(H)_2 \{P(C_6H_5)_3\}_2 \{OC(CH_3)_2\}_2][BF_4]$, the cation also has pseudooctahedral geometry with the two phosphines in mutual *trans* coordination and the hydrido ligands opposite to the acetone molecules (Crabtree *et al.*, 1984).

Experimental

Single crystals of the title compound were obtained by protonation of $[Ir(H)_5 \{P(C_6H_{11})_3\}_2]$ with tetrafluoridoboric acid (54% in diethyl ether) in acetone, followed by slow evaporation of the solvent at ambient temperature.

Refinement

The rotational disorder of the BF₄⁻ anion about the B1—F1 axis was modelled using one major and two minor orientations of the remaining BF₃ fragment with fluorine site occupancies fixed at 0.65, 1/4, and 0.10, respectively. Standard SADI restraints with subsequent rigid-group refinement were applied for the tetrahedral dimensions of the disordered ion. The two hydride ligands were placed, with Ir—H restrained to 1.55 Å, at the positions calculated by the HYDEX energy-minimizing procedure (Orpen, 1980). Carbon-bound H atoms were positioned geometrically (C—H = 0.96–0.99 Å) and refined using appropriate riding models. All hydrogen U_{iso} values were fixed at 1.2 times U_{eq} of the preceding carrier atom.

Figures

Fig. 1. Molecular structures of the ionic and solvate components of (I), including the major (octant-shaded) and minor (boundary) atomic positions of the disordered BF_4^- ion. Displacement ellipsoids are drawn at the 50% probability level. Carbon-bonded H atoms are omitted for clarity.

(OC-6-13)-Bis(acetone)dihydridobis(tricyclohexylphosphine)iridium(III) tetrafluoridoborate acetone solvate

Crystal data	
[IrH ₂ (C ₁₈ H ₃₃ P) ₂ (C ₃ H ₆ O) ₂]BF ₄ ·C ₃ H ₆ O	$F_{000} = 2112$
$M_r = 1016.09$	$D_{\rm x} = 1.366 {\rm ~Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 244 reflections
a = 10.218 (1) Å	$\theta = 6-20^{\circ}$
b = 25.199 (4) Å	$\mu = 2.82 \text{ mm}^{-1}$
c = 19.621 (1) Å	T = 100 (2) K
$\beta = 102.060 \ (5)^{\circ}$	Irregular, yellow
$V = 4940.6 (10) \text{ Å}^3$	$0.20\times0.18\times0.17~mm$
Z = 4	

Data collection

Nonius KappaCCD area-detector diffractometer	12737 independent reflections
Monochromator: graphite	10353 reflections with $I > 2\sigma(I)$
Detector resolution: 9 pixels mm ⁻¹	$R_{\rm int} = 0.049$
T = 100(2) K	$\theta_{\text{max}} = 28.7^{\circ}$
$\phi-$ and $\omega-$ rotations with 1.10 ° and 55 sec per frame scans	$\theta_{min} = 3.0^{\circ}$
Absorption correction: integration (Gaussian; Coppens <i>et al.</i> , 1965)	$h = -13 \rightarrow 13$
$T_{\min} = 0.562, \ T_{\max} = 0.687$	$k = -34 \rightarrow 34$
111705 measured reflections	$l = -26 \rightarrow 26$

Refinement

Refinement on F^2 Least-squares matrix: full Hydrogen site location: mixed H atoms treated by a mixture of $R[F^2 > 2\sigma(F^2)] = 0.024$ $wR(F^2) = 0.043$ where $P = (F_0^2 + 2F_c^2)/3$ S = 1.04 $(\Delta/\sigma)_{\text{max}} = 0.004$ $\Delta \rho_{max} = 0.54 \text{ e} \text{ Å}^{-3}$ 12737 reflections $\Delta \rho_{min} = -0.52 \text{ e } \text{\AA}^{-3}$ 544 parameters Extinction correction: none 39 restraints Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map independent and constrained refinement $w = 1/[\sigma^2(F_0^2) + (0.0135P)^2 + 3.6535P]$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Z	Uiso*/Ueq	Occ. (<1)
Ir1	0.284245 (8)	0.460836 (3)	0.267476 (4)	0.00798 (2)	
H1	0.2025 (16)	0.4558 (8)	0.3224 (9)	0.010*	
H2	0.4088 (14)	0.4555 (8)	0.3262 (9)	0.010*	
P1	0.28670 (6)	0.368517 (19)	0.26606 (3)	0.00904 (10)	
P2	0.29923 (5)	0.549912 (19)	0.29715 (3)	0.00913 (10)	
01	0.41473 (14)	0.46566 (6)	0.18679 (7)	0.0136 (3)	
02	0.11784 (13)	0.46847 (5)	0.17367 (7)	0.0108 (3)	
C1	0.2342 (2)	0.33866 (8)	0.34236 (10)	0.0113 (4)	
H1A	0.2436	0.2993	0.3390	0.014*	
C2	0.0868 (2)	0.35053 (8)	0.34315 (10)	0.0141 (4)	
H2A	0.0731	0.3894	0.3430	0.017*	
H2B	0.0290	0.3359	0.3005	0.017*	
C3	0.0458 (2)	0.32642 (9)	0.40740 (10)	0.0159 (4)	
H3A	-0.0470	0.3372	0.4082	0.019*	
H3B	0.0480	0.2872	0.4043	0.019*	
C4	0.1392 (2)	0.34446 (9)	0.47470 (11)	0.0160 (5)	
H4A	0.1309	0.3833	0.4800	0.019*	
H4B	0.1128	0.3271	0.5150	0.019*	
C5	0.2838 (2)	0.33051 (9)	0.47383 (10)	0.0150 (4)	
H5A	0.2933	0.2915	0.4710	0.018*	
H5B	0.3430	0.3429	0.5175	0.018*	
C6	0.3258 (2)	0.35675 (8)	0.41109 (10)	0.0137 (4)	
H6A	0.4196	0.3472	0.4107	0.016*	
H6B	0.3207	0.3958	0.4153	0.016*	
C7	0.4517 (2)	0.33716 (8)	0.26411 (10)	0.0111 (4)	
H7	0.4538	0.3330	0.2137	0.013*	
C8	0.5737 (2)	0.37216 (8)	0.29526 (11)	0.0131 (4)	
H8A	0.5615	0.4080	0.2741	0.016*	
H8B	0.5804	0.3760	0.3461	0.016*	

C9	0.7031 (2)	0.34750 (8)	0.28166 (11)	0.0161 (5)
H9A	0.7802	0.3696	0.3041	0.019*
H9B	0.6998	0.3472	0.2309	0.019*
C10	0.7234 (2)	0.29056 (8)	0.30994 (12)	0.0184 (5)
H10A	0.8034	0.2750	0.2966	0.022*
H10B	0.7392	0.2913	0.3615	0.022*
C11	0.6014 (2)	0.25610 (9)	0.28129 (12)	0.0178 (5)
H11A	0.6143	0.2205	0.3031	0.021*
H11B	0.5927	0.2516	0.2304	0.021*
C12	0.4729 (2)	0.28085 (8)	0.29554 (11)	0.0149 (4)
H12A	0.4784	0.2827	0.3465	0.018*
H12B	0.3955	0.2582	0.2750	0.018*
C13	0.1699 (2)	0.33971 (8)	0.18943 (10)	0.0124 (4)
H13	0.0807	0.3562	0.1889	0.015*
C14	0.1472 (2)	0.27940 (8)	0.18914 (11)	0.0180 (5)
H14A	0.2318	0.2609	0.1872	0.022*
H14B	0.1200	0.2688	0.2327	0.022*
C15	0.0383 (2)	0.26304 (9)	0.12626 (12)	0.0232 (5)
H15A	0.0275	0.2240	0.1260	0.028*
H15B	-0.0480	0.2793	0.1303	0.028*
C16	0.0744 (2)	0.28069 (9)	0.05804 (12)	0.0242 (5)
H16A	0.1555	0.2615	0.0516	0.029*
H16B	0.0004	0.2715	0.0186	0.029*
C17	0.1001 (2)	0.34030 (9)	0.05797 (11)	0.0202 (5)
H17A	0.0161	0.3596	0.0592	0.024*
H17B	0.1287	0.3503	0.0145	0.024*
C18	0.2081 (2)	0.35652 (9)	0.12081 (10)	0.0147 (5)
H18A	0.2204	0.3955	0.1206	0.018*
H18B	0.2941	0.3397	0.1174	0.018*
C19	0.1703 (2)	0.59093 (8)	0.23935 (10)	0.0115 (4)
H19	0.0854	0.5701	0.2341	0.014*
C20	0.1990 (2)	0.59394 (8)	0.16537 (10)	0.0144 (4)
H20A	0.2749	0.6183	0.1653	0.017*
H20B	0.2242	0.5584	0.1510	0.017*
C21	0.0750 (2)	0.61381 (9)	0.11372 (11)	0.0165 (5)
H21A	0.0008	0.5882	0.1119	0.020*
H21B	0.0950	0.6161	0.0666	0.020*
C22	0.0319(2)	0.66848 (9)	0.13532 (11)	0.0188 (5)
H22A	0.1011	0.6950	0.1310	0.023*
H22B	-0.0527	0.6791	0.1036	0.023*
C23	0.0118 (2)	0.66789 (9)	0.21033 (11)	0.0199 (5)
H23A	-0.0665	0.6455	0.2129	0.024*
H23B	-0.0075	0.7044	0.2241	0.024*
C24	0.1351 (2)	0.64662 (8)	0.26185 (11)	0.0160 (5)
H24A	0.2119	0.6708	0.2630	0.019*
H24B	0.1161	0.6451	0.3093	0.019*
C25	0.2682 (2)	0.56519 (8)	0.38504 (10)	0.0115 (4)
H25	0.2741	0.6046	0.3905	0.014*
C26	0.1266 (2)	0.54915 (8)	0.39223 (11)	0.0157 (5)
		(-)	× /	. (-)

H26A	0.0602	0.5654	0.3539	0.019*
H26B	0.1172	0.5101	0.3880	0.019*
C27	0.0977 (2)	0.56690 (10)	0.46231 (11)	0.0209 (5)
H27A	0.0081	0.5540	0.4664	0.025*
H27B	0.0966	0.6062	0.4642	0.025*
C28	0.2031 (2)	0.54562 (10)	0.52352 (11)	0.0234 (5)
H28A	0.1864	0.5604	0.5677	0.028*
H28B	0.1955	0.5065	0.5256	0.028*
C29	0.3438 (2)	0.56049 (9)	0.51579 (11)	0.0173 (5)
H29A	0.4100	0.5444	0.5544	0.021*
H29B	0.3544	0.5995	0.5190	0.021*
C30	0.3711 (2)	0.54132 (9)	0.44602 (10)	0.0134 (4)
H30A	0.3660	0.5021	0.4439	0.016*
H30B	0.4625	0.5520	0.4421	0.016*
C31	0.4636 (2)	0.57988 (8)	0.29324 (10)	0.0102 (4)
H31	0.4598	0.5878	0.2429	0.012*
C32	0.4943 (2)	0.63318 (8)	0.33186 (11)	0.0146 (4)
H32A	0.4197	0.6582	0.3154	0.018*
H32B	0.5011	0.6275	0.3824	0.018*
C33	0.6248 (2)	0.65754 (9)	0.31986 (12)	0.0194 (5)
H33A	0.6437	0.6906	0.3475	0.023*
H33B	0.6144	0.6669	0.2700	0.023*
C34	0.7431 (2)	0.61922 (9)	0.34073 (12)	0.0183 (5)
H34A	0.7610	0.6133	0.3917	0.022*
H34B	0.8242	0.6352	0.3290	0.022*
C35	0.7132 (2)	0.56596 (9)	0.30276 (11)	0.0162 (5)
H35A	0.7054	0.5714	0.2521	0.019*
H35B	0.7882	0.5411	0.3192	0.019*
C36	0.58314 (19)	0.54158 (8)	0.31571 (10)	0.0133 (4)
H36A	0.5937	0.5332	0.3659	0.016*
H36B	0.5648	0.5080	0.2892	0.016*
C37	0.5669 (2)	0.46118 (11)	0.11183 (12)	0.0256 (5)
H37A	0.6069	0.4950	0.1022	0.031*
H37B	0.5582	0.4379	0.0711	0.031*
H37C	0.6242	0.4442	0.1522	0.031*
C38	0.4313 (2)	0.47117 (8)	0.12710 (11)	0.0144 (4)
C39	0.3235 (2)	0.48740 (9)	0.06649 (11)	0.0192 (5)
H39A	0.2376	0.4890	0.0812	0.023*
H39B	0.3178	0.4614	0.0288	0.023*
H39C	0.3445	0.5224	0.0499	0.023*
C40	-0.0856(2)	0.46968 (9)	0.08943 (11)	0.0190 (5)
H40A	-0.0248	0 4696	0.0568	0.023*
H40B	-0.1409	0 5018	0.0823	0.023*
H40C	-0.1433	0 4383	0.0813	0.023*
C41	-0.0053(2)	0 46875 (8)	0 16295 (11)	0.0131 (4)
C42	-0.0809(2)	0 46771 (10)	0 22023 (11)	0.0232(5)
H42A	-0.0183	0 4717	0.2652	0.028*
H42B	-0 1283	0.4338	0.2193	0.028*
H42C	-0.1456	0.4969	0.2139	0.028*
11720	0.1700	0.7707	0.2137	0.020

O3	0.2746 (2)	0.84436 (9)	0.41579 (13)	0.0681 (7)	
C43	0.3208 (3)	0.80391 (15)	0.52688 (16)	0.0534 (9)	
H43A	0.2404	0.8229	0.5331	0.064*	
H43B	0.3983	0.8165	0.5614	0.064*	
H43C	0.3089	0.7658	0.5332	0.064*	
C44	0.3432 (3)	0.81387 (11)	0.45587 (14)	0.0342 (6)	
C45	0.4556 (3)	0.78411 (16)	0.43585 (17)	0.0606 (10)	
H45A	0.4384	0.7459	0.4374	0.073*	
H45B	0.5394	0.7926	0.4685	0.073*	
H45C	0.4629	0.7942	0.3886	0.073*	
B1	0.63333 (11)	0.88431 (5)	0.59616 (6)	0.0282 (6)	
F1	0.74063 (11)	0.91865 (5)	0.61781 (7)	0.0412 (4)	
F2	0.52168 (13)	0.90752 (10)	0.61630 (14)	0.0564 (10)	0.65
F3	0.6589 (2)	0.83624 (6)	0.62953 (14)	0.0490 (9)	0.65
F4	0.6068 (2)	0.87863 (10)	0.52580 (6)	0.0632 (12)	0.65
F2A	0.53400 (16)	0.89281 (10)	0.63199 (12)	0.040 (3)	0.25
F3A	0.6728 (2)	0.83142 (4)	0.60168 (16)	0.047 (3)	0.25
F4A	0.5812 (2)	0.89353 (10)	0.52508 (7)	0.042 (3)	0.25
F2B	0.5769 (2)	0.86477 (11)	0.64814 (9)	0.045 (5)	0.10
F3B	0.6844 (2)	0.84045 (7)	0.56388 (15)	0.061 (6)	0.10
F4B	0.53435 (17)	0.90809 (8)	0.54592 (12)	0.051 (6)	0.10

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Ir1	0.00797 (4)	0.00727 (3)	0.00852 (4)	0.00048 (4)	0.00131 (2)	-0.00013 (3)
P1	0.0090 (2)	0.0085 (2)	0.0092 (2)	0.0000 (2)	0.00099 (18)	-0.0004 (2)
P2	0.0093 (2)	0.0083 (3)	0.0095 (2)	0.00102 (19)	0.00132 (19)	0.00001 (18)
01	0.0153 (7)	0.0139 (7)	0.0122 (7)	-0.0019 (6)	0.0046 (6)	-0.0008 (6)
O2	0.0083 (7)	0.0106 (7)	0.0129 (7)	0.0007 (6)	0.0008 (5)	-0.0003 (5)
C1	0.0118 (10)	0.0098 (10)	0.0122 (10)	-0.0011 (8)	0.0027 (8)	0.0001 (8)
C2	0.0124 (11)	0.0166 (11)	0.0127 (10)	-0.0005 (8)	0.0009 (8)	0.0002 (8)
C3	0.0152 (11)	0.0178 (11)	0.0156 (11)	-0.0030 (9)	0.0055 (9)	0.0013 (8)
C4	0.0177 (12)	0.0177 (11)	0.0137 (11)	-0.0019 (9)	0.0061 (9)	0.0012 (8)
C5	0.0178 (11)	0.0170 (11)	0.0098 (10)	-0.0002 (9)	0.0021 (8)	0.0024 (8)
C6	0.0138 (11)	0.0153 (11)	0.0122 (10)	-0.0004 (9)	0.0032 (8)	-0.0010 (8)
C7	0.0104 (10)	0.0113 (10)	0.0117 (10)	0.0023 (8)	0.0026 (8)	-0.0016 (8)
C8	0.0117 (11)	0.0129 (10)	0.0140 (11)	0.0003 (8)	0.0014 (8)	-0.0007 (8)
С9	0.0112 (11)	0.0172 (11)	0.0193 (11)	0.0006 (9)	0.0021 (9)	0.0014 (9)
C10	0.0124 (11)	0.0151 (11)	0.0266 (13)	0.0041 (9)	0.0017 (9)	-0.0002 (9)
C11	0.0167 (12)	0.0136 (11)	0.0218 (12)	0.0051 (9)	0.0009 (9)	-0.0005 (9)
C12	0.0129 (11)	0.0106 (10)	0.0197 (11)	0.0006 (8)	-0.0004 (9)	-0.0013 (8)
C13	0.0100 (10)	0.0142 (10)	0.0118 (10)	-0.0016 (8)	-0.0001 (8)	-0.0025 (8)
C14	0.0209 (12)	0.0141 (11)	0.0168 (11)	-0.0025 (9)	-0.0011 (9)	-0.0010 (8)
C15	0.0248 (13)	0.0176 (12)	0.0239 (13)	-0.0068 (10)	-0.0025 (10)	-0.0051 (9)
C16	0.0279 (14)	0.0217 (12)	0.0180 (12)	0.0010 (10)	-0.0063 (10)	-0.0101 (9)
C17	0.0246 (13)	0.0206 (12)	0.0129 (11)	0.0007 (10)	-0.0019 (9)	-0.0033 (9)
C18	0.0152 (11)	0.0169 (11)	0.0113 (10)	0.0002 (9)	0.0013 (8)	-0.0018 (8)

C19	0.0096 (10)	0.0114 (10)	0.0121 (10)	0.0012 (8)	-0.0009 (8)	0.0007 (8)
C20	0.0161 (11)	0.0147 (11)	0.0122 (10)	0.0028 (9)	0.0024 (8)	0.0019 (8)
C21	0.0190 (12)	0.0163 (11)	0.0126 (11)	0.0037 (9)	-0.0002 (9)	0.0003 (8)
C22	0.0200 (12)	0.0153 (11)	0.0177 (11)	0.0045 (9)	-0.0039 (9)	0.0029 (9)
C23	0.0202 (12)	0.0167 (11)	0.0209 (12)	0.0108 (9)	-0.0001 (9)	-0.0014 (9)
C24	0.0190 (12)	0.0133 (10)	0.0141 (11)	0.0049 (9)	0.0000 (9)	-0.0015 (8)
C25	0.0137 (11)	0.0111 (10)	0.0101 (10)	0.0014 (8)	0.0033 (8)	-0.0006 (8)
C26	0.0139 (11)	0.0176 (12)	0.0164 (11)	0.0010 (8)	0.0050 (8)	-0.0018 (8)
C27	0.0172 (12)	0.0259 (13)	0.0224 (12)	-0.0008 (10)	0.0106 (10)	-0.0046 (10)
C28	0.0282 (13)	0.0285 (14)	0.0159 (11)	0.0005 (11)	0.0101 (10)	-0.0011 (10)
C29	0.0203 (12)	0.0194 (11)	0.0118 (11)	0.0031 (9)	0.0023 (9)	-0.0001 (8)
C30	0.0148 (10)	0.0140 (10)	0.0117 (10)	0.0003 (9)	0.0033 (8)	0.0017 (8)
C31	0.0100 (10)	0.0105 (10)	0.0103 (10)	-0.0006 (8)	0.0028 (8)	0.0009 (7)
C32	0.0136 (11)	0.0107 (10)	0.0192 (11)	-0.0008 (8)	0.0028 (9)	-0.0003 (8)
C33	0.0200 (12)	0.0131 (11)	0.0250 (12)	-0.0061 (9)	0.0044 (10)	-0.0011 (9)
C34	0.0138 (11)	0.0207 (12)	0.0207 (12)	-0.0052 (9)	0.0045 (9)	-0.0018 (9)
C35	0.0106 (11)	0.0206 (12)	0.0177 (11)	0.0006 (9)	0.0036 (9)	-0.0019 (9)
C36	0.0104 (10)	0.0116 (9)	0.0176 (10)	0.0008 (9)	0.0022 (8)	-0.0006 (9)
C37	0.0163 (11)	0.0397 (14)	0.0225 (12)	0.0032 (12)	0.0082 (9)	0.0049 (11)
C38	0.0135 (11)	0.0119 (11)	0.0181 (11)	-0.0014 (8)	0.0043 (8)	0.0000 (8)
C39	0.0200 (12)	0.0241 (12)	0.0141 (11)	0.0031 (10)	0.0053 (9)	0.0017 (9)
C40	0.0141 (11)	0.0242 (13)	0.0167 (11)	0.0025 (9)	-0.0015 (9)	-0.0010 (9)
C41	0.0132 (10)	0.0074 (10)	0.0176 (11)	0.0016 (8)	0.0010 (8)	-0.0001 (8)
C42	0.0154 (11)	0.0352 (15)	0.0190 (12)	0.0022 (10)	0.0034 (9)	0.0022 (10)
O3	0.0511 (15)	0.0535 (15)	0.0860 (18)	-0.0109 (12)	-0.0170 (13)	0.0303 (13)
C43	0.045 (2)	0.076 (3)	0.0460 (19)	-0.0144 (18)	0.0257 (16)	-0.0103 (17)
C44	0.0280 (15)	0.0336 (15)	0.0383 (16)	-0.0072 (12)	0.0011 (12)	0.0046 (12)
C45	0.054 (2)	0.089 (3)	0.044 (2)	-0.001 (2)	0.0210 (17)	-0.0189 (19)
B1	0.0293 (16)	0.0300 (16)	0.0256 (16)	-0.0019 (13)	0.0059 (13)	0.0038 (12)
F1	0.0244 (8)	0.0388 (10)	0.0593 (11)	-0.0064 (7)	0.0062 (8)	-0.0015 (8)
F2	0.0292 (19)	0.0468 (18)	0.097 (3)	0.0002 (14)	0.0225 (18)	-0.0071 (19)
F3	0.048 (2)	0.0413 (19)	0.056 (2)	-0.0039 (15)	0.0060 (15)	0.0273 (14)
F4	0.111 (3)	0.055 (2)	0.025 (2)	-0.029 (2)	0.0166 (19)	0.0024 (13)
F2A	0.033 (5)	0.073 (6)	0.019 (3)	-0.008 (4)	0.018 (3)	-0.019 (4)
F3A	0.047 (5)	0.033 (4)	0.057 (6)	0.000 (3)	0.000 (4)	0.023 (3)
F4A	0.053 (5)	0.046 (5)	0.024 (5)	-0.010 (4)	0.000 (4)	0.010 (3)
F2B	0.045 (8)	0.054 (9)	0.035 (8)	-0.016 (7)	0.003 (7)	0.016 (7)
F3B	0.052 (9)	0.067 (9)	0.063 (9)	0.013 (7)	0.009 (7)	-0.026 (8)
F4B	0.048 (9)	0.040 (8)	0.055 (9)	0.000 (7)	-0.010 (7)	0.012 (7)
Geometric p	arameters (Å °)					
		0.0070 (10)		11220	0.00	
IrI - 02		2.2379 (13)	C22–	-H22B	0.99	00 7 (2)
Irl—Ol		2.2762 (14)	C23–	-024	1.53	7 (3)
IrI—P2		2.3159 (6)	C23–	-H23A	0.99	00
Irl—P1		2.3267 (6)	C23–	–H23B	0.99	00

C24—H24A

C24—H24B C25—C26

1.501 (14)

1.534 (14)

1.852 (2)

Ir1—H1

Ir1—H2

P1-C1

0.9900

0.9900

1.537 (3)

P1—C13	1.861 (2)	C25—C30	1.541 (3)
P1—C7	1.870 (2)	С25—Н25	1.0000
P2—C25	1.858 (2)	C26—C27	1.532 (3)
P2—C31	1.858 (2)	C26—H26A	0.9900
P2—C19	1.862 (2)	С26—Н26В	0.9900
O1—C38	1.226 (2)	C27—C28	1.533 (3)
O2—C41	1.232 (2)	C27—H27A	0.9900
C1—C2	1.539 (3)	С27—Н27В	0.9900
C1—C6	1.541 (3)	C28—C29	1.524 (3)
C1—H1A	1.0000	C28—H28A	0.9900
C2—C3	1.534 (3)	C28—H28B	0.9900
C2—H2A	0.9900	C29—C30	1.531 (3)
C2—H2B	0.9900	С29—Н29А	0.9900
C3—C4	1.528 (3)	С29—Н29В	0.9900
С3—НЗА	0.9900	С30—Н30А	0.9900
С3—Н3В	0.9900	С30—Н30В	0.9900
C4—C5	1.523 (3)	C31—C32	1.542 (3)
C4—H4A	0.9900	C31—C36	1.547 (3)
C4—H4B	0.9900	С31—Н31	1.0000
C5—C6	1.535 (3)	C32—C33	1.531 (3)
С5—Н5А	0.9900	C32—H32A	0.9900
С5—Н5В	0.9900	C32—H32B	0.9900
С6—Н6А	0.9900	C33—C34	1.534 (3)
С6—Н6В	0.9900	С33—Н33А	0.9900
C7—C12	1.544 (3)	С33—Н33В	0.9900
С7—С8	1.545 (3)	C34—C35	1.534 (3)
С7—Н7	1.0000	C34—H34A	0.9900
C8—C9	1.533 (3)	C34—H34B	0.9900
C8—H8A	0.9900	C35—C36	1.532 (3)
C8—H8B	0.9900	С35—Н35А	0.9900
C9—C10	1.537 (3)	С35—Н35В	0.9900
С9—Н9А	0.9900	С36—Н36А	0.9900
С9—Н9В	0.9900	С36—Н36В	0.9900
C10—C11	1.527 (3)	C37—C38	1.498 (3)
C10—H10A	0.9900	С37—Н37А	0.9800
C10—H10B	0.9900	С37—Н37В	0.9800
C11—C12	1.531 (3)	С37—Н37С	0.9800
C11—H11A	0.9900	C38—C39	1.500 (3)
C11—H11B	0.9900	С39—Н39А	0.9800
C12—H12A	0.9900	С39—Н39В	0.9800
C12—H12B	0.9900	С39—Н39С	0.9800
C13—C14	1.537 (3)	C40—C41	1.503 (3)
C13—C18	1.538 (3)	C40—H40A	0.9800
C13—H13	1.0000	C40—H40B	0.9800
C14—C15	1.535 (3)	C40—H40C	0.9800
C14—H14A	0.9900	C41—C42	1.491 (3)
C14—H14B	0.9900	C42—H42A	0.9800
C15—C16	1.527 (3)	C42—H42B	0.9800
C15—H15A	0.9900	C42—H42C	0.9800

C15—H15B	0.9900	O3—C44	1.212 (3)
C16—C17	1.525 (3)	C43—C44	1.480 (4)
C16—H16A	0.9900	C43—H43A	0.9800
C16—H16B	0.9900	C43—H43B	0.9800
C17—C18	1.529 (3)	С43—Н43С	0.9800
С17—Н17А	0.9900	C44—C45	1.491 (4)
С17—Н17В	0.9900	C45—H45A	0.9800
C18—H18A	0.9900	C45—H45B	0.9800
C18—H18B	0.9900	С45—Н45С	0.9800
C19—C24	1.536 (3)	B1—F4	1.3577
C19—C20	1.542 (3)	B1—F2B	1.3643
С19—Н19	1.0000	B1—F2A	1.3669
C20—C21	1.532 (3)	B1—F3	1.3759
C20—H20A	0.9900	B1—F3A	1.3901
C20—H20B	0.9900	B1—F1	1.3917
C21—C22	1.533 (3)	B1—F4B	1.3918
C21—H21A	0.9900	B1—F4A	1.4045
C21—H21B	0.9900	B1—F2	1.4100
C22—C23	1.528 (3)	B1—F3B	1.4257
C22—H22A	0.9900		
O2—Ir1—O1	83.00 (5)	H21A—C21—H21B	108.0
O2—Ir1—P2	97.03 (4)	C23—C22—C21	111.20 (17)
01—Ir1—P2	96.06 (4)	C23—C22—H22A	109.4
O2—Ir1—P1	94.84 (4)	C21—C22—H22A	109.4
O1—Ir1—P1	92.05 (4)	C23—C22—H22B	109.4
P2—Ir1—P1	166.350 (19)	C21—C22—H22B	109.4
O2—Ir1—H1	99.0 (7)	H22A—C22—H22B	108.0
O1—Ir1—H1	177.4 (7)	C22—C23—C24	112.36 (18)
P2—Ir1—H1	85.3 (8)	С22—С23—Н23А	109.1
P1—Ir1—H1	86.2 (8)	С24—С23—Н23А	109.1
O2—Ir1—H2	173.7 (7)	С22—С23—Н23В	109.1
O1—Ir1—H2	90.7 (7)	C24—C23—H23B	109.1
P2—Ir1—H2	84.0 (8)	H23A—C23—H23B	107.9
P1—Ir1—H2	84.9 (8)	C19—C24—C23	109.76 (17)
H1—Ir1—H2	87.2 (8)	C19—C24—H24A	109.7
C1—P1—C13	104.43 (9)	C23—C24—H24A	109.7
C1—P1—C7	105.05 (9)	C19—C24—H24B	109.7
C13—P1—C7	104.34 (9)	C23—C24—H24B	109.7
C1—P1—Ir1	113.01 (7)	H24A—C24—H24B	108.2
C13—P1—Ir1	113.14 (7)	C26—C25—C30	109.23 (16)
C7—P1—Ir1	115.77 (7)	C26—C25—P2	112.17 (14)
C25—P2—C31	106.58 (9)	C30—C25—P2	114.74 (14)
C25—P2—C19	102.35 (9)	С26—С25—Н25	106.7
C31—P2—C19	106.27 (9)	С30—С25—Н25	106.7
C25—P2—Ir1	114.78 (7)	Р2—С25—Н25	106.7
C31—P2—Ir1	113.35 (6)	C27—C26—C25	111.55 (17)
C19—P2—Ir1	112.56 (7)	С27—С26—Н26А	109.3
C38—O1—Ir1	152.71 (14)	C25—C26—H26A	109.3
C41—O2—Ir1	135.60 (13)	С27—С26—Н26В	109.3

C2—C1—C6	110.51 (17)	C25—C26—H26B	109.3
C2—C1—P1	112.25 (14)	H26A—C26—H26B	108.0
C6—C1—P1	111.20 (14)	C26—C27—C28	111.42 (18)
C2—C1—H1A	107.6	С26—С27—Н27А	109.3
C6—C1—H1A	107.6	С28—С27—Н27А	109.3
P1—C1—H1A	107.6	С26—С27—Н27В	109.3
C3—C2—C1	111.52 (17)	С28—С27—Н27В	109.3
C3—C2—H2A	109.3	H27A—C27—H27B	108.0
C1—C2—H2A	109.3	C29—C28—C27	111.06 (18)
C3—C2—H2B	109.3	C29—C28—H28A	109.4
C1—C2—H2B	109.3	C27—C28—H28A	109.4
H2A—C2—H2B	108.0	C29—C28—H28B	109.4
C4—C3—C2	111.36 (17)	C27—C28—H28B	109.4
С4—С3—НЗА	109.4	H28A—C28—H28B	108.0
С2—С3—НЗА	109.4	C28—C29—C30	111.33 (18)
С4—С3—Н3В	109.4	С28—С29—Н29А	109.4
С2—С3—Н3В	109.4	С30—С29—Н29А	109.4
НЗА—СЗ—НЗВ	108.0	С28—С29—Н29В	109.4
C5—C4—C3	110.73 (17)	С30—С29—Н29В	109.4
С5—С4—Н4А	109.5	H29A—C29—H29B	108.0
C3—C4—H4A	109.5	C29—C30—C25	110.38 (17)
C5—C4—H4B	109.5	С29—С30—Н30А	109.6
C3—C4—H4B	109.5	С25—С30—Н30А	109.6
H4A—C4—H4B	108.1	С29—С30—Н30В	109.6
C4—C5—C6	110.10(17)	С25—С30—Н30В	109.6
С4—С5—Н5А	109.6	H30A—C30—H30B	108.1
С6—С5—Н5А	109.6	C32—C31—C36	109.65 (16)
С4—С5—Н5В	109.6	C32—C31—P2	115.24 (14)
С6—С5—Н5В	109.6	C36—C31—P2	113.67 (14)
Н5А—С5—Н5В	108.2	C32—C31—H31	105.8
C5—C6—C1	110 74 (17)	C36—C31—H31	105.8
C5—C6—H6A	109.5	P2—C31—H31	105.8
C1 - C6 - H6A	109.5	$C_{33} - C_{32} - C_{31}$	111 58 (17)
C5—C6—H6B	109.5	$C_{33} - C_{32} - H_{32A}$	109.3
C1—C6—H6B	109.5	$C_{31} - C_{32} - H_{32A}$	109.3
нба—Сб—НбВ	108.1	C33_C32_H32B	109.3
C12-C7-C8	109.43 (16)	C31_C32_H32B	109.3
C12 = C7 = C0	115 57 (14)	H32A_C32_H32B	108.0
C8 - C7 - P1	114.02 (14)	$C_{32} - C_{33} - C_{34}$	111 71 (18)
C12—C7—H7	105.6	C32—C33—H33A	109.3
C8_C7_H7	105.6	C34_C33_H33A	109.3
P1H7	105.6	C32_C33_H33B	109.3
C9 - C8 - C7	110.68 (17)	C34—C33—H33B	109.3
C9 - C8 - H8A	109.5	H33A_C33_H33B	107.9
C7—C8—H8A	109.5	C_{33} C_{34} C_{35}	110 77 (18)
C_{9} C_{8} H_{8} H_{8}	109.5	C33_C34_H34A	109.5
C7_C8_H8B	109.5	C35_C34_H34A	109.5
	109.5	C33_C34_H34R	109.5
$C_{0} = C_{0} = C_{10}$	111 84 (18)	C35-C34-H34B	109.5
0-09-010	111.04 (10)	CJJ—CJ4—ПJ4D	107.3

С8—С9—Н9А	109.2	H34A—C34—H34B	108.1
С10—С9—Н9А	109.2	C36—C35—C34	111.23 (17)
С8—С9—Н9В	109.2	С36—С35—Н35А	109.4
С10—С9—Н9В	109.2	С34—С35—Н35А	109.4
Н9А—С9—Н9В	107.9	С36—С35—Н35В	109.4
C11—C10—C9	111.07 (17)	С34—С35—Н35В	109.4
C11—C10—H10A	109.4	H35A—C35—H35B	108.0
C9—C10—H10A	109.4	C35—C36—C31	111.27 (17)
C11—C10—H10B	109.4	С35—С36—Н36А	109.4
С9—С10—Н10В	109.4	С31—С36—Н36А	109.4
H10A—C10—H10B	108.0	С35—С36—Н36В	109.4
C10-C11-C12	111.50 (18)	С31—С36—Н36В	109.4
C10-C11-H11A	109.3	H36A—C36—H36B	108.0
C12—C11—H11A	109.3	С38—С37—Н37А	109.5
C10—C11—H11B	109.3	С38—С37—Н37В	109.5
C12—C11—H11B	109.3	Н37А—С37—Н37В	109.5
H11A—C11—H11B	108.0	С38—С37—Н37С	109.5
C11—C12—C7	110.79 (17)	H37A—C37—H37C	109.5
C11—C12—H12A	109.5	H37B-C37-H37C	109.5
C7—C12—H12A	109.5	01-C38-C37	119.36 (19)
C11—C12—H12B	109.5	01-C38-C39	124.26 (19)
C7—C12—H12B	109.5	$C_{37} - C_{38} - C_{39}$	116 38 (18)
H12A— $C12$ — $H12B$	108.1	C38—C39—H39A	109.5
C14-C13-C18	109 56 (17)	C38—C39—H39B	109.5
C14—C13—P1	117 35 (14)	H39A—C39—H39B	109.5
C18—C13—P1	111.25 (14)	C38—C39—H39C	109.5
C14—C13—H13	106.0	$H_{39A} - C_{39} - H_{39C}$	109.5
C18—C13—H13	106.0	H39B-C39-H39C	109.5
P1—C13—H13	106.0	C41—C40—H40A	109.5
C15-C14-C13	110 60 (18)	C41—C40—H40B	109.5
C15-C14-H14A	109 5	H40A—C40—H40B	109.5
C13 - C14 - H14A	109.5	C41 - C40 - H40C	109.5
C15-C14-H14B	109.5	H40A - C40 - H40C	109.5
C13 - C14 - H14B	109.5	H40B-C40-H40C	109.5
H14A - C14 - H14B	109.5	$\Omega^2 - C^{41} - C^{42}$	122 86 (19)
C16-C15-C14	111.05 (10)	02 - C41 - C40	122.00(19)
C_{16} C_{15} H_{15A}	109.4	$C_{42} = C_{41} = C_{40}$	117.31(19)
C14—C15—H15A	109.4	C_{42} C_{41} C_{42} H_{42A}	109.5
C16-C15-H15B	109.4	C41 - C42 - H42B	109.5
C14—C15—H15B	109.4	$H42\Delta - C42 - H42B$	109.5
H15A_C15_H15B	109.4	CA1 - CA2 - HA2C	109.5
C17_C16_C15	111 14 (18)	$H42\Delta - C42 - H42C$	109.5
C17_C16_H16A	109.4	H42B - C42 - H42C	109.5
C_{15} C_{16} H_{16A}	109.1	C44 - C43 - H43A	109.5
C17-C16-H16B	109.4	C44 - C43 - H43B	109.5
C15-C16-H16B	109.4	H43A - C43 - H43B	109.5
H16A—C16—H16B	108.0	C44—C43—H43C	109.5
C16-C17-C18	110.96 (19)	H43A - C43 - H43C	109.5
C16-C17-H17A	109.4	H43B_C43_H43C	109.5
	107.1	11130 013 11130	107.0

C18—C17—H17A	109.4	O3—C44—C43	122.4 (3)
С16—С17—Н17В	109.4	O3—C44—C45	121.4 (3)
С18—С17—Н17В	109.4	C43—C44—C45	116.2 (3)
H17A—C17—H17B	108.0	C44—C45—H45A	109.5
C17—C18—C13	111.08 (18)	C44—C45—H45B	109.5
C17—C18—H18A	109.4	H45A—C45—H45B	109.5
C13—C18—H18A	109.4	C44—C45—H45C	109.5
C17—C18—H18B	109.4	H45A—C45—H45C	109.5
C13—C18—H18B	109.4	H45B—C45—H45C	109.5
H18A—C18—H18B	108.0	F4—B1—F3	111.6
C24—C19—C20	109.13 (16)	F2A—B1—F3A	110.2
C24—C19—P2	120.69 (14)	F4—B1—F1	110.7
C20-C19-P2	110.55 (14)	F2B—B1—F1	115.2
С24—С19—Н19	105.0	F2A—B1—F1	111.6
С20—С19—Н19	105.0	F3—B1—F1	110.0
P2—C19—H19	105.0	F3A—B1—F1	112.0
C21—C20—C19	110.18 (17)	F2B—B1—F4B	109.1
C21—C20—H20A	109.6	F1—B1—F4B	111.0
С19—С20—Н20А	109.6	F2A—B1—F4A	108.5
C21—C20—H20B	109.6	F3A—B1—F4A	106.2
С19—С20—Н20В	109.6	F1—B1—F4A	108.1
H20A—C20—H20B	108.1	F4—B1—F2	109.1
C20—C21—C22	110.89 (17)	F3—B1—F2	108.4
C20—C21—H21A	109.5	F1—B1—F2	106.8
C22—C21—H21A	109.5	F2B—B1—F3B	107.7
C20-C21-H21B	109.5	F1—B1—F3B	106.2
C22—C21—H21B	109.5	F4B—B1—F3B	107.4
O2—Ir1—P1—C1	-113.65 (8)	C7—P1—C13—C18	-64.65 (16)
O1—Ir1—P1—C1	163.20 (8)	Ir1—P1—C13—C18	62.02 (16)
P2—Ir1—P1—C1	36.70 (12)	C18—C13—C14—C15	-57.5 (2)
O2—Ir1—P1—C13	4.77 (8)	P1-C13-C14-C15	174.38 (15)
O1—Ir1—P1—C13	-78.38 (8)	C13-C14-C15-C16	57.1 (3)
P2—Ir1—P1—C13	155.12 (10)	C14—C15—C16—C17	-55.8 (3)
O2—Ir1—P1—C7	125.13 (8)	C15-C16-C17-C18	55.6 (3)
O1—Ir1—P1—C7	41.98 (8)	C16-C17-C18-C13	-56.9 (3)
P2—Ir1—P1—C7	-84.52 (11)	C14—C13—C18—C17	57.7 (2)
O2—Ir1—P2—C25	119.70 (8)	P1-C13-C18-C17	-170.95 (15)
O1—Ir1—P2—C25	-156.63 (8)	C25—P2—C19—C24	38.12 (19)
P1—Ir1—P2—C25	-30.52 (12)	C31—P2—C19—C24	-73.49 (18)
O2—Ir1—P2—C31	-117.50 (8)	Ir1—P2—C19—C24	161.87 (15)
O1—Ir1—P2—C31	-33.83 (8)	C25—P2—C19—C20	167.12 (14)
P1—Ir1—P2—C31	92.28 (11)	C31—P2—C19—C20	55.51 (16)
O2—Ir1—P2—C19	3.16 (8)	Ir1—P2—C19—C20	-69.13 (15)
O1—Ir1—P2—C19	86.82 (8)	C24—C19—C20—C21	-60.8 (2)
P1—Ir1—P2—C19	-147.07 (10)	P2-C19-C20-C21	164.19 (14)
O2—Ir1—O1—C38	3.7 (3)	C19—C20—C21—C22	58.3 (2)
P2—Ir1—O1—C38	-92.7 (3)	C20—C21—C22—C23	-54.1 (2)
P1—Ir1—O1—C38	98.3 (3)	C21—C22—C23—C24	53.6 (3)
O1—Ir1—O2—C41	177.91 (18)	C20—C19—C24—C23	59.1 (2)

P2—Ir1—O2—C41	-86.80 (18)	P2-C19-C24-C23	-171.23 (16)
P1—Ir1—O2—C41	86.44 (18)	C22—C23—C24—C19	-56.3 (2)
C13—P1—C1—C2	-58.05 (16)	C31—P2—C25—C26	172.35 (14)
C7—P1—C1—C2	-167.56 (14)	C19—P2—C25—C26	60.98 (16)
Ir1—P1—C1—C2	65.33 (15)	Ir1—P2—C25—C26	-61.28 (15)
C13—P1—C1—C6	177.58 (15)	C31—P2—C25—C30	-62.25 (17)
C7—P1—C1—C6	68.06 (16)	C19—P2—C25—C30	-173.62 (15)
Ir1—P1—C1—C6	-59.04 (16)	Ir1—P2—C25—C30	64.12 (16)
C6—C1—C2—C3	-54.1 (2)	C30—C25—C26—C27	57.2 (2)
P1—C1—C2—C3	-178.89 (14)	P2-C25-C26-C27	-174.40 (15)
C1—C2—C3—C4	54.5 (2)	C25—C26—C27—C28	-55.4 (2)
C2—C3—C4—C5	-56.7 (2)	C26—C27—C28—C29	53.9 (3)
C3—C4—C5—C6	58.6 (2)	C27—C28—C29—C30	-55.6 (2)
C4—C5—C6—C1	-58.6 (2)	C28—C29—C30—C25	58.3 (2)
C2—C1—C6—C5	56.3 (2)	C26—C25—C30—C29	-58.3 (2)
P1-C1-C6-C5	-178.36 (14)	P2-C25-C30-C29	174.77 (14)
C1—P1—C7—C12	28.15 (17)	C25—P2—C31—C32	-35.95 (17)
C13—P1—C7—C12	-81.44 (16)	C19—P2—C31—C32	72.68 (16)
Ir1—P1—C7—C12	153.54 (12)	Ir1—P2—C31—C32	-163.16 (12)
C1—P1—C7—C8	-99.95 (15)	C25—P2—C31—C36	91.82 (15)
C13—P1—C7—C8	150.47 (14)	C19—P2—C31—C36	-159.55 (14)
Ir1—P1—C7—C8	25.45 (16)	Ir1—P2—C31—C36	-35.39 (16)
C12—C7—C8—C9	57.5 (2)	C36—C31—C32—C33	55.9 (2)
P1C7C8C9	-171.33 (14)	P2-C31-C32-C33	-174.35 (14)
C7—C8—C9—C10	-56.1 (2)	C31—C32—C33—C34	-55.8 (2)
C8—C9—C10—C11	54.2 (2)	C32—C33—C34—C35	54.9 (2)
C9—C10—C11—C12	-54.6 (2)	C33—C34—C35—C36	-55.5 (2)
C10-C11-C12-C7	57.3 (2)	C34—C35—C36—C31	57.0 (2)
C8—C7—C12—C11	-58.2 (2)	C32—C31—C36—C35	-56.5 (2)
P1C7C12C11	171.50 (14)	P2-C31-C36-C35	172.86 (14)
C1—P1—C13—C14	-47.42 (18)	Ir1—O1—C38—C37	-171.0 (2)
C7—P1—C13—C14	62.62 (18)	Ir1—O1—C38—C39	8.8 (4)
Ir1—P1—C13—C14	-170.71 (14)	Ir1—O2—C41—C42	5.3 (3)
C1—P1—C13—C18	-174.69 (15)	Ir1—O2—C41—C40	-174.12 (13)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C8—H8A…O1	0.99	2.49	3.358 (3)	146
C18—H18A…O2	0.99	2.45	3.207 (3)	133
C36—H36B…O1	0.99	2.50	3.347 (3)	144
С39—Н39А…О2	0.98	2.45	3.304 (3)	146
C39—H39B…F4 ⁱ	0.98	2.54	3.441 (3)	153
C40—H40B…F1 ⁱⁱ	0.98	2.51	3.434 (3)	156
Symmetry adds: (i) $-m+1$ $y=1/2$ $-m+1/2$: (i)	(1) = 1 = 1 + 2/2 = -1/2			

Symmetry codes: (i) -x+1, y-1/2, -z+1/2; (ii) x-1, -y+3/2, z-1/2.

